Respuesta :
Answer:
4,000 cm³
Step-by-step explanation:
Let x be the length of the sides of the base and h be the height of the box.
The surface area is given by:
[tex]A=x^2+4xh=1,200\\h=\frac{1,200-x^2}{4x}[/tex]
The volume if the box is:
[tex]V=hx^2\\V=({\frac{1,200-x^2}{4x}} )*x^2\\V=300x-\frac{x^3}{4}[/tex]
The value of x for which the derivate of the function above is zero will produce the largest possible volume:
[tex]V=300x-\frac{x^3}{4} \\V'=300-\frac{3}{4}x^2=0\\ x^2=400\\x=20\ cm[/tex]
The height of the box is:
[tex]h=\frac{1,200-20^2}{4*20}\\h=10\ cm[/tex]
The largest possible volume is:
[tex]V=10*20^2\\V=4,000\ cm^3[/tex]
The largest possible volume of the box is 4,000 cm³
The volume of the open-top box is the amount of space in it.
The largest possible volume of the box is 4000 cubic centimeters
The surface area of an open-top box is:
[tex]\mathbf{A = 2lh + 2wh + lw}[/tex]
So, we have:
[tex]\mathbf{2lh + 2wh + lw = 1200}[/tex]
The box has a square base.
So, we have:
[tex]\mathbf{l= w }[/tex]
The expression becomes
[tex]\mathbf{2lh + 2lh + l^2 = 1200}[/tex]
[tex]\mathbf{4lh + l^2 = 1200}[/tex]
Make the subject
[tex]\mathbf{h = \frac{1200 - l^2}{4l}}[/tex]
The volume of the box is:
[tex]\mathbf{V = lwh}[/tex]
So, we have:
[tex]\mathbf{V = l^2h}[/tex]
Substitute [tex]\mathbf{h = \frac{1200 - l^2}{4l}}[/tex]
[tex]\mathbf{V = l^2 \times \frac{1200 - l^2}{4l}}[/tex]
[tex]\mathbf{V = l \times \frac{1200 - l^2}{4}}[/tex]
Expand
[tex]\mathbf{V = \frac{1200l - l^3}{4}}[/tex]
Split
[tex]\mathbf{V = 300l - \frac{l^3}{4}}[/tex]
Differentiate
[tex]\mathbf{V' = 300 - \frac{3l^2}{4}}[/tex]
Set to 0
[tex]\mathbf{ 300 - \frac{3l^2}{4} = 0}[/tex]
Rewrite as:
[tex]\mathbf{ \frac{3l^2}{4} = 300}[/tex]
Multiply through by 4
[tex]\mathbf{ 3l^2 = 1200}[/tex]
Divide both sides by 3
[tex]\mathbf{l^2 = 400}[/tex]
Take square roots of both sides
[tex]\mathbf{l = 20}[/tex]
Recall that:
[tex]\mathbf{h = \frac{1200 - l^2}{4l}}[/tex]
So, we have:
[tex]\mathbf{h = \frac{1200 - 20^2}{4 \times 20}}[/tex]
[tex]\mathbf{h = \frac{1200 - 400}{80}}[/tex]
[tex]\mathbf{h = \frac{800}{80}}[/tex]
[tex]\mathbf{h = 10}[/tex]
Recall that:
[tex]\mathbf{V = l^2h}[/tex]
So, we have:
[tex]\mathbf{V=20^2 \times 10}[/tex]
[tex]\mathbf{V=4000}[/tex]
Hence, the largest possible volume of the box is 4000 cubic centimeters
Read more about volumes at:
https://brainly.com/question/2198651