Respuesta :

Answer:

4,000 cm³

Step-by-step explanation:

Let x be the length of the sides of the base and h be the height of the box.

The surface area is given by:

[tex]A=x^2+4xh=1,200\\h=\frac{1,200-x^2}{4x}[/tex]

The volume if the box is:

[tex]V=hx^2\\V=({\frac{1,200-x^2}{4x}} )*x^2\\V=300x-\frac{x^3}{4}[/tex]

The value of x for which the derivate of the function above is zero will produce the largest possible volume:

[tex]V=300x-\frac{x^3}{4} \\V'=300-\frac{3}{4}x^2=0\\ x^2=400\\x=20\ cm[/tex]

The height of the box is:

[tex]h=\frac{1,200-20^2}{4*20}\\h=10\ cm[/tex]

The largest possible volume is:

[tex]V=10*20^2\\V=4,000\ cm^3[/tex]

The largest possible volume of the box is 4,000 cm³

The volume of the open-top box is the amount of space in it.

The largest possible volume of the box is 4000 cubic centimeters

The surface area of an open-top box is:

[tex]\mathbf{A = 2lh + 2wh + lw}[/tex]

So, we have:

[tex]\mathbf{2lh + 2wh + lw = 1200}[/tex]

The box has a square base.

So, we have:

[tex]\mathbf{l= w }[/tex]

The expression becomes

[tex]\mathbf{2lh + 2lh + l^2 = 1200}[/tex]

[tex]\mathbf{4lh + l^2 = 1200}[/tex]

Make  the subject

[tex]\mathbf{h = \frac{1200 - l^2}{4l}}[/tex]

The volume of the box is:

[tex]\mathbf{V = lwh}[/tex]

So, we have:

[tex]\mathbf{V = l^2h}[/tex]

Substitute [tex]\mathbf{h = \frac{1200 - l^2}{4l}}[/tex]

[tex]\mathbf{V = l^2 \times \frac{1200 - l^2}{4l}}[/tex]

[tex]\mathbf{V = l \times \frac{1200 - l^2}{4}}[/tex]

Expand

[tex]\mathbf{V = \frac{1200l - l^3}{4}}[/tex]

Split

[tex]\mathbf{V = 300l - \frac{l^3}{4}}[/tex]

Differentiate

[tex]\mathbf{V' = 300 - \frac{3l^2}{4}}[/tex]

Set to 0

[tex]\mathbf{ 300 - \frac{3l^2}{4} = 0}[/tex]

Rewrite as:

[tex]\mathbf{ \frac{3l^2}{4} = 300}[/tex]

Multiply through by 4

[tex]\mathbf{ 3l^2 = 1200}[/tex]

Divide both sides by 3

[tex]\mathbf{l^2 = 400}[/tex]

Take square roots of both sides

[tex]\mathbf{l = 20}[/tex]

Recall that:

[tex]\mathbf{h = \frac{1200 - l^2}{4l}}[/tex]

So, we have:

[tex]\mathbf{h = \frac{1200 - 20^2}{4 \times 20}}[/tex]

[tex]\mathbf{h = \frac{1200 - 400}{80}}[/tex]

[tex]\mathbf{h = \frac{800}{80}}[/tex]

[tex]\mathbf{h = 10}[/tex]

Recall that:

[tex]\mathbf{V = l^2h}[/tex]

So, we have:

[tex]\mathbf{V=20^2 \times 10}[/tex]

[tex]\mathbf{V=4000}[/tex]

Hence, the largest possible volume of the box is 4000 cubic centimeters

Read more about volumes at:

https://brainly.com/question/2198651

ACCESS MORE