Answer:
The answer is given below
Step-by-step explanation:
The distance from the lake to the car is 3 miles and it takes 2 hours. The velocity of the hiker is 3/2 mi/hr. Therefore f(t) which is the distance from the car t hours after 7 A.M is given by:
[tex]f(t)=\frac{3}{2}t[/tex]
When coming back on Sunday morning, the distance g(t) from the car at any point in time is given by:
[tex]g(t)=3-\frac{3}{2}t[/tex]
a)
[tex]f(t)=\frac{3}{2}t\\f(0)=\frac{3}{2}(0)=0\ mile\\f(2)=\frac{3}{2}(2)=3\ miles[/tex]
[tex]g(t)=3-\frac{3}{2}t\\g(0)=3-\frac{3}{2}(0)=3\ miles\\g(2)=3-\frac{3}{2}(2)=2-2=0\ mile\\[/tex]
b)
[tex]h(t)=f(t)-g(t)=\frac{3}{2}t -(3-\frac{3}{2}t)=\frac{3}{2}t -3+\frac{3}{2}t=3t-3\\h(t)=3t-3\\h(0)=3(0)-3=0-3=-3\\h(2)=3(2)-3=6-3=3[/tex]
c)
According to Intermediate Value Theorem, there exist a point b where f(b) = g(b). i.e. f(b) - g(b) = 0
[tex]h(b)=f(b)-g(b)=0\\h(0)=-3,h(2)=3[/tex]
This means there exist a point b within the interval [-3, 3] where f(b) - g(b) = 0