Respuesta :
Answer:
(a) Increasing:[tex]\frac{\pi}{2}< x< \frac{3\pi}{2}[/tex] and Decreasing:[tex]0< x< \frac{\pi}{2}\ \text{or}\ \frac{3\pi}{2}< x< 2\pi[/tex]
(b) The local minimum and maximum values are -16 and 16 respectively.
(c) The inflection points are [tex](\frac{\pi}{6},\ -2)\ \text{and}\ (\frac{5\pi}{6},\ -2)[/tex]
Step-by-step explanation:
The function provided is:
[tex]f(x)=8cos^{2}(x)-16sin( x);\ 0\leq x\leq 2\pi[/tex]
(a)
[tex]f(x)=8cos^{2}(x)-16sin( x);\ 0\leq x\leq 2\pi[/tex]
Then, [tex]f'(x)=-16cos(x)sin(x)-16cos(x)=-16cos(x)[1+sin(x)][/tex]
Note, [tex]1+sin(x)\geq 0\ \text{and }\ sin(x)\geq 1\\[/tex]
Then, [tex]sin(x)=-1\Rightarrow x=\frac{3\pi}{2}[/tex] for [tex]0\leq x\leq 2\pi[/tex].
Also [tex]cos(x)=0[/tex].
Thus, f (x) is increasing for,
[tex]f'(x)>0\\\Rightarrow cos(x)<0\\\Rightarrow \frac{\pi}{2}< x< \frac{3\pi}{2}[/tex]
And f (x) is decreasing for,
[tex]f'(x)<0\\\Rightarrow cos(x)>0\\\Rightarrow 0< x< \frac{\pi}{2}\ \text{or}\ \frac{3\pi}{2}< x< 2\pi[/tex]
(b)
From part (a) f (x) changes from decreasing to increasing at [tex]x=\frac{\pi}{2}[/tex] and from increasing to decreasing at [tex]x=\frac{3\pi}{2}[/tex].
The local minimum value is:
[tex]f(\frac{\pi}{2})=8cos^{2}(\frac{\pi}{2})-16sin(\frac{\pi}{2})=-16[/tex]
The local maximum value is:
[tex]f(\frac{3\pi}{2})=8cos^{2}(\frac{3\pi}{2})-16sin(\frac{3\pi}{2})=16[/tex]
(c)
Compute the value of f'' (x) as follows:
[tex]f''(x)=16sin(x)[1+sin(x)]-16cos^{2}(x)\\\\=16sin(x)+16sin^{2}(x)-16[1-sin^{2}(x)]\\\\=32sin^{2}(x)+16sin(x)-16\\\\=16[2sin(x)-1][sin (x)+1][/tex]
So,
[tex]f''(x)>0\\\Rightarrow sin(x)>\frac{1}{2}\\\Rightarrow \frac{\pi}{6}<x<\frac{5\pi}{6}[/tex]
And,
[tex]f''(x)<0\\\\\Rightarrow sin(x)<\frac{1}{2}\ \text{and}\ sin (x)\neq -1\\\\\Rightarrow 0<x<\frac{\pi}{6}\ \text{or} \frac{5\pi}{6}<x<\frac{3\pi}{2}\ \text{or}\ \frac{3\pi}{2}<x<2\pi[/tex]
Thus, f (x) is concave upward on [tex](\frac{\pi}{6},\ \frac{5\pi}{6})[/tex] and concave downward on [tex](0,\ \frac{\pi}{6}), (\frac{5\pi}{6},\ \frac{3\pi}{2})\ \text{and}\ (\frac{3\pi}{2},\ 2\pi)[/tex].
If [tex]x=\frac{\pi}{6}[/tex], then f (x) will be:
[tex]f(\frac{\pi}{6})=8cos^{2}(\frac{\pi}{6})-16sin(\frac{\pi}{6})=-2[/tex]
If [tex]x=\frac{5\pi}{6}[/tex], then f (x) will be:
[tex]f(\frac{5\pi}{6})=8cos^{2}(\frac{5\pi}{6})-16sin(\frac{5\pi}{6})=-2[/tex]
The inflection points are [tex](\frac{\pi}{6},\ -2)\ \text{and}\ (\frac{5\pi}{6},\ -2)[/tex].
Otras preguntas
