Respuesta :
Answer:
The answer to this question can be defined as follows:
Explanation:
The risk-free rate of T-bill is (r f), which is 4.4% = 0.044. The fund for stocks (S) An expected 14% = 0.14 return and the value of the standard deviation is 34% = 0.34. The Announcement fund of (B) and the estimated 5% = 0.05 return, with a standard deviation 28% = 0.28 .
following are the formula for the equation is:
[tex]E(R)=E(r)-r_f \ \ \ \ \ \ \ \ \ \ \ \ where, \\\\E(R)= \ Expected \ return\\E (r) = \ Expected \ return \ on \ stock \\(r_f)= \ Risk-free \ rate[/tex]
Using the formula to measure the projected return for bond and stock fund:
[tex]E(R_s)=E(r_s)-r_f\\[/tex]
[tex]=0.14-0.044\\ =0.096\\[/tex]
[tex]E(R_B)=E(r_B)-r_f[/tex]
[tex]= 0.05-0.044\\= 0.006[/tex]
Measure mass with optimized risk for stock index fund (S) and Bond Fund (B), Introduce to investment as follows:
[tex]W_s=\frac{E(R_s)\sigma_{B}^2-E(R_B) Cov(r_s,r_s)}{E(R_s)\sigma_B^2+E(R_B)\sigma_s^2-[E(R_s)+E(R_s)]Cov(r_s,r_s)}[/tex]
[tex]W_s = \ Stock \ Fund \ weight \\ W_B = \ Bond \ Fund \ weight \\[/tex]
[tex]\sigma_s[/tex][tex]= \ de fault \ stock \ found \ variance\\[/tex]
[tex]\sigma_{B}= \ Bond \ Fund \ standard \ deviation \\r_s = \ Stock \ fund \ planned \ return \\r_B = \ Bond \ fund's \ projected \ return\\ Cov(r_s, r_B)= \ Pension \ and \ bond \ fund \ covariance\\[/tex]
Measure the portfolio and bond fund covariance according to:
Bond and equity fund covariance [tex]= \ Bond \ and \ stocks \ fund \ correlation \times \sigma_s \times \sigma_B[/tex]
[tex]= 0.14 \times 0.34 \times 0.28\\= 0.013328\\[/tex]
Measure the mass of the stock and bond fund as follows:
[tex]W_s=\frac{E(R_s)\sigma_{B}^2-E(R_B) Cov(r_s,r_s)}{E(R_s)\sigma_B^2+E(R_B)\sigma_s^2-[E(R_s)+E(R_s)]Cov(r_s,r_s)}[/tex]
[tex]=\frac{0.096 \times 0.28^2-0.006\times 0.013328}{0.096 \times 0.28^2+0.006\times 0.34^2-[0.096+0.006]\times 0.013328}[/tex]
[tex]=\frac{0.0075264-0.000079968}{0.0075264+0.0006936-0.001359456}\\\\=\frac{0.007446432}{0.006860544}\\\\=1.085\\[/tex]
[tex]W_B=1-W_s\\\\[/tex]
[tex]=1-1.085\\\\=-0.85[/tex]
The correspondence(p) here is 0.14. Calculate the norm for the maximum risky as follows:
[tex]\ deviation \ of \ portfolio \ =\sqrt{(W_s)^2 (\sigma_s)^2+(W_B)^2 (\sigma_B)^2+ 2(W_s)(W_B)(\sigma_s) (\sigma_B) (P)}[/tex]
[tex]=\sqrt{(1.05)^2 (0.34)^2+(-0.0854)^2 (0.28)^2+ 2(1.0854)(-0.0854)(0.34) (0.28) (0.14)}\\=\sqrt{0.13428852416704}\\=0.366453986\\=36.65%[/tex]
The standard deviation for the optimal risky portfolio is 36.65%
[tex]\ Expected \ return \ portfolio = (\ mass \ of \ stock \ found \times \ expected \ return \ on\ stock)+ ( mass \ of \ bond\ found \times \ expected \ return \ on\ bond)[/tex][tex]=(1.085\times 0.14)+(-0.0854 \times 0.05)\\= 0.151956-0.00427\\=0.1477\\=14.77%\\[/tex]
The optimal risk portfolio is 14.77%