Answer:
[tex]2\sin{\frac{x}{2}}\cos{\frac{x}{2}} = \sin{x}[/tex]
Step-by-step explanation:
The double angle formula states that:
[tex]\sin{2a} = 2\sin{a}\cos{a}[/tex]
In this question:
[tex]2\sin{\frac{x}{2}}\cos{\frac{x}{2}}[/tex]
So
[tex]a = \frac{x}{2}[/tex]
Then
[tex]2\sin{\frac{x}{2}}\cos{\frac{x}{2}} = \sin{\frac{2x}{2}} = \sin{x}[/tex]