Answer:
[tex]\huge\boxed{A=3\sqrt{255}\ in^2\approx47.91\ in^2}[/tex]
Step-by-step explanation:
We have two sides
[tex]a=12in;\ b=14in[/tex]
and the preimeter
[tex]P=34in[/tex]
We can calculate the length of the third side:
[tex]c=P-a-b[/tex]
substitute
[tex]c=34-12-14=8\ (in)[/tex]
Use the Heron's formula:
[tex]A=\sqrt{p(p-a)(p-b)(p-c)[/tex]
where
[tex]p=\dfrac{P}{2}[/tex]
substitute:
[tex]p=\dfrac{34}{2}=17\ (in)\\\\A=\sqrt{17(17-12)(17-14)(17-8)}=\sqrt{(17)(5)(3)(9)}\\\\=\sqrt{9}\cdot\sqrt{(17)(5)(3)}=3\sqrt{255}\ (in^2)\approx47.91\ (in^2)[/tex]