Answer:
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.
Step-by-step explanation:
We can model this with a binomial random variable, with sample size n=20 and probability of success p=0.08.
The probability of k online retail orders that turn out to be fraudulent in the sample is:
[tex]P(x=k)=\dbinom{n}{k}p^k(1-p)^{n-k}=\dbinom{20}{k}\cdot0.08^k\cdot0.92^{20-k}[/tex]
We have to calculate the probability that 2 or more online retail orders that turn out to be fraudulent. This can be calculated as:
[tex]P(x\geq2)=1-[P(x=0)+P(x=1)]\\\\\\P(x=0)=\dbinom{20}{0}\cdot0.08^{0}\cdot0.92^{20}=1\cdot1\cdot0.189=0.189\\\\\\P(x=1)=\dbinom{20}{1}\cdot0.08^{1}\cdot0.92^{19}=20\cdot0.08\cdot0.205=0.328\\\\\\\\P(x\geq2)=1-[0.189+0.328]\\\\P(x\geq2)=1-0.517=0.483[/tex]
The probability that there are 2 or more fraudulent online retail orders in the sample is 0.483.