Answer:
[tex]u/n = \frac{-e^2}{4\pi \epsilon r} (ln2)[/tex]
Explanation:
given data
we will take here
sodium ions = positive charge
chloride ions = negative cgarge
solution
as when we take Na positive charge so Number of origin is
d = 0
and here pair of ions with negative charge at d = - r
and d = +r
therefore
[tex]u = \frac{-2e^2}{4\pi \epsilon r} \times \frac{1}{r} \times \sum _n {\frac{1}{n}}(-1)^{n-1}[/tex]
we will use here Taylor series approx method
[tex]u = \frac{-e^2}{2\pi \epsilon r} (ln2)[/tex]
and N/2 pair will contribute here
so
[tex]u = \frac{N}{2} \frac{-e^2}{2\pi \epsilon r} (ln2)[/tex]
so energy per ion will be here
[tex]u/n = \frac{-e^2}{4\pi \epsilon r} (ln2)[/tex]