Respuesta :
Answer:
[tex]g(x) = 30\cdot x +40[/tex]; [tex]a \approx 1.898[/tex], [tex]k = 40[/tex].
Step-by-step explanation:
The resultant function is obtained by multiplying [tex]f(x)[/tex] by a real number [tex]k[/tex]. That is:
[tex]g(x) = k \cdot f (x)[/tex]
If [tex]k = 5[/tex] and [tex]f(x) = 6\cdot x + 8[/tex], then [tex]g(x)[/tex] is:
[tex]g(x) = 5\cdot (6\cdot x + 8)[/tex]
[tex]g(x) = 30\cdot x +40[/tex]
Given that presence of the expression [tex]g(x) = 6^{a}\cdot x + k[/tex], then:
[tex]6^{a} = 30[/tex] and [tex]k = 40[/tex]
The value of a is obtained by applying the definition of logarithms:
[tex]a = \log_{6}30[/tex]
[tex]a \approx 1.898[/tex]
Finally, the value of k is found by direct comparison:
[tex]k = 40[/tex]