Respuesta :
Answer:
Second choice.
f(x) = 1/2(x - 6)^2 + 3/2.
Step-by-step explanation:
The distance of a point (x, y) from the focus = the distance of the point from the directrix, so:
(x - 6)^2 + (y - 2)^2 = (y - 1)^2
x^2 - 12x + 36 + y^2 - 4y + 4 = y^2 - 2y + 1
x^2 -12x + 39 = 2y
y = f(x) = 1/2 (x^2 - 12x + 39)
I see you want the answer in vertex for so it is:
f(x) = 1/2 [ (x - 6)^2 - 36) + 39)
f(x) = 1/2(x - 6)^2 + 3)
f(x) = 1/2(x - 6)^2 + 3/2.
A parabola is a plane that is approximately U-shaped.
The equation of the parabola is: [tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
The given parameters are:
[tex]\mathbf{Focus = (6,2)}[/tex]
[tex]\mathbf{Directrix: y = 1}[/tex]
First, equate the directrix to 0
[tex]\mathbf{y - 1 = 0}[/tex]
The equation is then calculated as:
[tex]\mathbf{(x - a)^2 + (y - b)^2 = (y- 1)^2}[/tex]
Where:
[tex]\mathbf{(a,b) = (6,2)}[/tex]
So, we have:
[tex]\mathbf{(x - 6)^2 + (y - 2)^2 = (y- 1)^2}[/tex]
Expand
[tex]\mathbf{x^2 - 12x +36 + y^2 - 4y + 4 = y^2 - 2y + 1}[/tex]
Subtract y^2 from both sides
[tex]\mathbf{x^2 - 12x +36 - 4y + 4 =- 2y + 1}[/tex]
Collect like terms
[tex]\mathbf{x^2 - 12x +36 + 4 - 1 =4y - 2y}[/tex]
[tex]\mathbf{x^2 - 12x +39 =2y}[/tex]
Divide through by 2
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +39)}[/tex]
Express 39 as 36 + 3
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +36 + 3)}[/tex]
Factor out 3/2
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +36) + \frac 32}[/tex]
Expand the bracket
[tex]\mathbf{y = \frac{1}{2}(x^2 - 6x - 6x +36) + \frac 32}[/tex]
Factorize
[tex]\mathbf{y = \frac{1}{2}(x(x - 6) - 6(x -6)) + \frac 32}[/tex]
Factor out x - 6
[tex]\mathbf{y = \frac{1}{2}((x - 6) (x -6)) + \frac 32}[/tex]
Express as squares
[tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
Hence, the equation of the parabola is: [tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
Read more about equations of parabola at:
https://brainly.com/question/4074088