The region bounded by the given curves is rotated about the specified axis. Find the volume V of the resulting solid by any method. y = −x2 + 23x − 132, y = 0; about the y−axis

Respuesta :

Answer:

V  = 23π/6

Step-by-step explanation:

V = 2π ∫ [a to b] (r * h) dx

y = −x² + 23x − 132

y = −(x² − 23x + 132)

y = −(x − 11) (x − 12)

Parabola intersects x-axis (line y = 0) at x = 11 and x = 12 ----> a = 11, b = 12

r = x

h = −x² + 23x − 132

V = 2π ∫ [11 to 12] x (−x² + 23x − 132) dx

V  = 23π/6

ACCESS MORE