Respuesta :
Answer:
The power dissipated by each bulb is [tex]P = 10.0 \ W[/tex]
Explanation:
From the question we are told that
The power rating of both bulbs is [tex]P = 40 \ W[/tex]
The voltage rating of both bulb is [tex]V = 120 \ V[/tex]
The both bulbs are connected a voltage of [tex]V_C = 120 V[/tex]
The amount of power rating of each bulb is mathematically represented as
[tex]P = \frac{V^2}{R }[/tex]
=> [tex]R = \frac{V^2}{P}[/tex]
substituting values
[tex]R = \frac{ (120)^2}{40}[/tex]
[tex]R = 360 \Omega[/tex]
Now given that the bulbs are connected is series, the equivalent resistance is evaluated as
[tex]R_{eq } = R +R[/tex]
substituting values
[tex]R_{eq } = 360 + 360[/tex]
[tex]R_{eq } =720 \ \Omega[/tex]
The current flowing through the bulbs is mathematically evaluated as
[tex]I =\frac{V_C}{R_{eq}}[/tex]
substituting values
[tex]I =\frac{120}{720}[/tex]
[tex]I = 0.1667 \ A[/tex]
Now the power dissipated by both bulbs is mathematically represented as
[tex]P = I ^2 * R[/tex]
substituting values
[tex]P = 0.1668^2 * 360[/tex]
[tex]P = 10.0 \ W[/tex]
The power that should be dissipated by each bulb is P = 10.0 W.
Calculation of the power:
Since
The power rating of both bulbs is P = 40 W.
The voltage rating of both bulbs is V = 120 V.
And, both bulks that should be connected a voltage of Vc = 120V
Now the amount of power that should be rated of each bulb should be
P = V^2/R
So, R = V^2/P
= 120^2/40
= 360Ω
The equivalent resistance should be
I = Vc/Req
= 120/720
= 0.1667 A
Now the power is = 0.1668^2 * 360
= 10.0 W
Learn more about power here: https://brainly.com/question/14089891