Answer:
[tex]z=\frac{0.21 -0.31}{\sqrt{\frac{0.31(1-0.31)}{100}}}=-2.162[/tex]
Since is a bilateral test the p value would be:
[tex]p_v =2*P(z<-2.162)=0.0306[/tex]
Step-by-step explanation:
Information given
n=100 represent the random sample taken
[tex]\hat p=0.21[/tex] estimated proportion of the readers owned a particular make of car
[tex]p_o=0.31[/tex] is the value that we want to test
z would represent the statistic
[tex]p_v[/tex] represent the p value
Hypothesis to test
We need to conduct a hypothesis in order to test if the true proportion is 0.31 or no.:
Null hypothesis:[tex]p=0.31[/tex]
Alternative hypothesis:[tex]p \neq 0.31[/tex]
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
And replacing we got:
[tex]z=\frac{0.21 -0.31}{\sqrt{\frac{0.31(1-0.31)}{100}}}=-2.162[/tex]
Since is a bilateral test the p value would be:
[tex]p_v =2*P(z<-2.162)=0.0306[/tex]