Respuesta :

Answer:

[tex] P(X\geq 20)= P(X=20)+P(X=21)+P(X=22)+P(X=23)+P(X=24)+P(X=25)[/tex]

And replacing using the mass function we got:

[tex]P(X=20)=(25C20)(0.85)^{20} (1-0.85)^{25-20}=0.156[/tex]  

[tex]P(X=21)=(25C21)(0.85)^{21} (1-0.85)^{25-21}=0.211[/tex]  

[tex]P(X=22)=(25C22)(0.85)^{22} (1-0.85)^{25-22}=0.217[/tex]  

[tex]P(X=23)=(25C23)(0.85)^{23} (1-0.85)^{25-23}=0.161[/tex]  

[tex]P(X=24)=(25C24)(0.85)^{24} (1-0.85)^{25-24}=0.0759[/tex]  

[tex]P(X=25)=(25C25)(0.85)^{25} (1-0.85)^{25-25}=0.0172[/tex]  

And adding the values we got:

[tex] P(X\geq 20) = 0.8381[/tex]

Step-by-step explanation:

Let X the random variable of interest, on this case we now that:  

[tex]X \sim Binom(n=25, p=0.85)[/tex]  

The probability mass function for the Binomial distribution is given as:  

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]  

Where (nCx) means combinatory and it's given by this formula:  

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]  

We want to find the following probability:

[tex] P(X\geq 20)= P(X=20)+P(X=21)+P(X=22)+P(X=23)+P(X=24)+P(X=25)[/tex]

And replacing using the mass function we got:

[tex]P(X=20)=(25C20)(0.85)^{20} (1-0.85)^{25-20}=0.156[/tex]  

[tex]P(X=21)=(25C21)(0.85)^{21} (1-0.85)^{25-21}=0.211[/tex]  

[tex]P(X=22)=(25C22)(0.85)^{22} (1-0.85)^{25-22}=0.217[/tex]  

[tex]P(X=23)=(25C23)(0.85)^{23} (1-0.85)^{25-23}=0.161[/tex]  

[tex]P(X=24)=(25C24)(0.85)^{24} (1-0.85)^{25-24}=0.0759[/tex]  

[tex]P(X=25)=(25C25)(0.85)^{25} (1-0.85)^{25-25}=0.0172[/tex]  

And adding the values we got:

[tex] P(X\geq 20) = 0.8381[/tex]