Triangles X Y Z and E G F are shown. Side X Y is 3.0 inches and angle Y Z X is 107 degrees. Side F G is 2.4 inches and side E F is 1.3 inches. Angle G E F is 48 degrees. Given ΔXYZ ≅ ΔEGF, find the measurements of the unknown sides and angles. ZX = 1.3 in. EG = 3 in. m∠X = ° m∠G = °

Respuesta :

Answer:

The answer is given below

Step-by-step explanation:

In triangle EFG, let a = EG, A = ∠f, b= 1.3 in, B = ∠G, c = 2.4 in C = ∠E = 48°

Using cosine rule:

[tex]c^2=a^2+b^2-2ab*cos(C)\\a^2-2ab*cos(C)=c^2-b^2\\Substituting:\\a^2-2a(1.3)cos(48)=2.4^2-1.3^2\\a^2-1.74a=4.07\\a^2-1.74a-4.07=0\\a=3\ or\ -1.34\\a=EG=3\ inches[/tex]

EG = 3 inches

Using sine rule,

[tex]\frac{b}{sin(B)} =\frac{c}{sin(C)}\\ Substituting:\\\frac{1.3}{sin(B)} =\frac{2.4}{sin(48)}\\sin(B)=\frac{sin(48)*1.3}{2.4}=0.4025\\ B=sin^{-1}(0.4025)=23.7^0[/tex]

∠G = B = 23.7°

Given ΔXYZ ≅ ΔEGF,

Therefore: ZX = EF = 1.3 inches, m∠X = m∠G =23.7 °, m∠Z = m∠F = 107°

ZY = FG = 2.4

Answer:

ZX = 1.3 in.

EG = 3 in.

m∠X = 48°

m∠G = 25°

Step-by-step explanation:

ΔXYZ ≅ ΔEGF

107 + 48 = 155

m∠G = 180 - 155 = 25

ACCESS MORE