Answer:
The essence including its given problem is outlined in the following segment on the context..
Explanation:
The given values are:
Moles of CO₂,
x = 0.01962
Moles of water,
[tex]\frac{y}{2} =0.01961[/tex]
[tex]y=2\times 0.01961[/tex]
[tex]=0.03922[/tex]
Compound's mass,
= 0.4647 g
Let the compound's formula will be:
[tex]C_{x}H_{y}O_{z}[/tex]
Combustion's general equation will be:
⇒ [tex]C_{x}H_{y}O_{z}+x+(\frac{y}{4}-\frac{z}{2}) O_{2}=xCO_{2}+\frac{y}{2H_{2}O}[/tex]
On putting the estimated values, we get
⇒ [tex]12\times x=1\times y+16\times z=0.4647[/tex]
⇒ [tex]12\times 0.01962+1\times 0.03922+16\times z=0.4647[/tex]
⇒ [tex]0.27466+16z=0.4647[/tex]
⇒ [tex]z=0.01187[/tex]
Now,
x : y : z = [tex]0.01962:0.03922:0.01187[/tex]
= [tex]\frac{0.01962}{0.0118}:\frac{0.03922}{0.0188}:\frac{0.0188}{0.0188}[/tex]
= [tex]1.6:3.3:1.0[/tex]
= [tex]3:6:2[/tex]
So that the empirical formula seems to be "C₃H₆O₂".