Respuesta :
Answer:
Explanation:
Magnetic field due to moving charge =
[tex]B=\frac{\mu_0}{4\pi} \times \frac{qv}{r^2}[/tex]
q is charge moving with velocity v and r is distance from point at which field is calculated .
For alpha particle
[tex]B_1=\frac{\mu_0}{4\pi} \times \frac{2\times 1.6\times10^{-19}\times 2.8\times 10^5}{(8.25\times 10^{-9})^2}[/tex]
= 0.1316 x 10⁻³ T
For electron
[tex]B_2=\frac{\mu_0}{4\pi} \times \frac{ 1.6\times10^{-19}\times 2.8\times 10^5}{(8.25\times 10^{-9})^2}[/tex]
= .0658 x 10⁻³ T .
Both these magnetic field will be same in direction because direction of equivalent current is same for both the particles .
Hence
Total magnetic field
= B₁ + B₂ = .1974 x 10⁻³
= 1.974 x 10⁻⁴ T .
The total magnetic field produced by these charges at the given point is 1.98 x 10⁻⁴ T.
The given parameters;
- charge of the alpha-particle, q = 2e
- speed of the charges, v = 2.8 x 10⁵ m/s
- separation distance, r = 8.25 nm
The magnetic field produced by each charge is calculated using Biot-Savart law;
[tex]B = \frac{\mu _o q}{4\pi } \times \frac{v}{r^2} \\\\B_1 = \frac{(4\pi \times 10^{-7} ) \times (1.602 \times 10^{-19})}{4\pi } \times \frac{2.8 \times 10^5}{(8.25 \times 10^{-9} )^2}\\\\B_1 = 6.6 \times 10^{-5} \ T[/tex]
[tex]B_2 = \frac{(4\pi \times 10^{-7} ) \times (2\times 1.602 \times 10^{-19})}{4\pi } \times \frac{2.8 \times 10^5}{(8.25 \times 10^{-9} )^2}\\\\B_2 = 1.32 \times 10^{-4} \ T[/tex]
The total magnetic field produced by these charges at the given point P;
[tex]B_T = B_1 + B_2\\\\B_T = 6.6\times 10^{-5} \ + \ 1.32 \times 10^{-4}\\\\B_T = 1.98 \times 10^{-4} \ T[/tex]
Learn more here:https://brainly.com/question/12984403