contestada

A metal sphere of radius 2.0 cm carries an excess charge of 3.0 μC. What is the electric field 6.0 cm from the center of the sphere? (k = 1/4πε0 = 9.0 × 109 N ∙ m2/C2)

Respuesta :

Answer:

The electric field is  [tex]E = 7.5 *10^{6} \ N/C[/tex]

Explanation:

From the question we are told that

    The radius of the metal sphere is  [tex]R = 2.0 \ cm = 0.02 \ m[/tex]

     The excess charge which the metal sphere carries is  [tex]q = 3.0 \mu C = 3.0*10^{-6} \ C[/tex]

      The distance of the position being to the center is [tex]D = 6.0 \ cm = 0.06 \ m[/tex]

       The coulomb constant is   [tex]k =9*10^{9} \ N \cdot m^2 /C^2[/tex]

Generally the electric field is mathematically represented as  

        [tex]E = \frac{k * q}{D^2}[/tex]

substituting values

        [tex]E = \frac{9*10^{9} * 30.*10^{-6}}{(0.06)^2}[/tex]

      [tex]E = 7.5 *10^{6} \ N/C[/tex]

The electric field from the center of the sphere will be "7.5 × 10⁶ N/C".

Electric field

According to the question,

Metal sphere's radius, R = 2.0 cm or,

                                        = 0.02 m

The excess charge, q = 3.0 μC or,

                                    = 3.0 × 10⁻⁶ C

Position distance, D = 6.0 cm or,

                                  = 0.06 cm  

Coulomb constant, k = 9 × 10⁹ N.m²/C²

We know the relation,

Electric field, E = [tex]\frac{k\times q}{D^2}[/tex]

By substituting the values, we get

                          = [tex]\frac{9\times 10^9\times 3.0\times 10^{-6}}{(0.06)^2}[/tex]

                          = [tex]\frac{9\times 10^9\times 3.0\times 10^{-6}}{0.0036}[/tex]

                          = 7.5 × 10⁶ N/C  

Thus the approach above is correct.

Find out more information about electric field here:

https://brainly.com/question/14372859