What is the value of x in the equation (StartFraction one-half EndFractionx + 12) = StartFraction one-half EndFraction(StartFraction 2 Over 3 EndFraction left-parenthesis StartFraction one-half EndFraction. x plus 12 right-parenthesis equals left-parenthesis StartFraction one-half EndFraction left-parenthesis StartFraction one-third EndFraction x plus 14 right-parenthesis minus 3.x + 14) – 3?

Respuesta :

Answer:

[tex]x =-24[/tex]

Step-by-step explanation:

Given

[tex](\frac{2}{3})(\frac{1}{2}x + 12) = (\frac{1}{2})(\frac{1}{3}x + 14) - 3[/tex]

Required

Solve for x

[tex](\frac{2}{3})(\frac{1}{2}x + 12) = (\frac{1}{2})(\frac{1}{3}x + 14) - 3[/tex]

Open all brackets

[tex]\frac{2}{3}*\frac{1}{2}x + \frac{2}{3}*12 = \frac{1}{2}*\frac{1}{3}x + \frac{1}{2}*14 - 3[/tex]

[tex]\frac{2 * 1}{3 *2}x + \frac{2 * 12}{3}= \frac{1 * 1}{2 * 3}x + \frac{1 * 14}{2} - 3[/tex]

[tex]\frac{1}{3}x + \frac{24}{3}= \frac{1}{6}x + \frac{14}{2} - 3[/tex]

[tex]\frac{1}{3}x +8= \frac{1}{6}x + 7 - 3[/tex]

Collect like terms

[tex]\frac{1}{3}x - \frac{1}{6}x =7 - 3 -8[/tex]

[tex]\frac{1}{3}x - \frac{1}{6}x =-4[/tex]

Solve fraction

[tex]\frac{2-1}{6}x =-4[/tex]

[tex]\frac{1}{6}x =-4[/tex]

Multiply both sides by 6

[tex]6 * \frac{1}{6}x =-4 * 6[/tex]

[tex]x =-4 * 6[/tex]

[tex]x =-24[/tex]

Answer:

Step-by-step explanation:

Given

Required

Solve for x

Open all brackets

Collect like terms

Solve fraction

Multiply both sides by 6

ACCESS MORE