Answer:
Rate at which the volume is increasing, [tex]\frac{dV}{dt} = 40.18 cm^3/min[/tex]
Explanation:
Volume, V = 450 cm³
Pressure, P = 80 kPa
Rate of decrease in pressure, [tex]\frac{dP}{dt} = - 10 kPa/min[/tex]
Rate of increase in volume, [tex]\frac{dV}{dt} = ?[/tex]
The equation relating the pressure, P and the volume,V
[tex]PV^{1.4} = C[/tex]..............(1)
Differentiating both sides with respect to t (Using Products rule)
[tex]1.4 PV^{0.4} \frac{dV}{dt} + V^{1.4} \frac{dP}{dt} = 0[/tex]..............(2)
Substitute the necessary parameters into equation (2)
[tex]1.4 * 80*450^{0.4} \frac{dV}{dt} + 450^{1.4} *(-10) = 0\\\\1289.74 \frac{dV}{dt} - 51820.013 = 0\\\\1289.74 \frac{dV}{dt} = 51820.013\\\\\frac{dV}{dt} = \frac{51820.013}{1289.74}\\\\\frac{dV}{dt} = 40.18 cm^3/min[/tex]