Respuesta :

Answer:

[tex]b = 5 \sqrt{3} \ or\ b = -5 \sqrt{3}[/tex]

Step-by-step explanation:

Given

[tex]f(b) = b^2 - 75[/tex]

Required

Determine the roots

To get the root of the function, then f(b) must be 0;

i.e. f(b) = 0

So, the expression becomes

[tex]0 = b^2 - 75[/tex]

Add 75 to both sides

[tex]75 + 0 = b^2 - 75 + 75[/tex]

[tex]75 = b^2[/tex]

Take square roots of both sides

[tex]\sqrt{75} = \sqrt{b^2}[/tex]

[tex]\sqrt{75} = b[/tex]

Reorder

[tex]b = \sqrt{75}[/tex]

Expand 75 as a product of 25 and 3

[tex]b = \sqrt{25*3}[/tex]

Split the expression

[tex]b = \sqrt{25} *\sqrt{3}[/tex]

[tex]b = \±5 *\sqrt{3}[/tex]

[tex]b = \±5 \sqrt{3}[/tex]

[tex]b = 5 \sqrt{3} \ or\ b = -5 \sqrt{3}[/tex]

The options are not clear enough; however the roots of the equation are [tex]b = 5 \sqrt{3} \ or\ b = -5 \sqrt{3}[/tex]

ACCESS MORE