Choice A: [tex]2,2, \sqrt{4}[/tex]
Choice B: 9, 40, 41
Choice C: [tex]\sqrt{5}, 10$ and \sqrt{125}[/tex]
Answer:
(B)9, 40, 41
Step-by-step explanation:
To check if the sides form a right triangle, you check to see if they satisfy the Pythagorean theorem.
[tex]Hypotenuse^2=Opposite^2+Adjacent^2[/tex]
Note that the longest side length is always the hypotenuse.
Choice A: [tex]2,2, \sqrt{4}[/tex]
Now, [tex]\sqrt{4}=2[/tex]
Therefore:
[tex]2^2\neq 2^2+2^2\\4 \neq 8[/tex]
These side lengths form an equilateral triangle. They do not satisfy the theorem.
Choice B: 9, 40, 41
The longest side length is 41.
[tex]41^2=1681[/tex]
[tex]40^2+9^2=1681[/tex]
Therefore:
[tex]41^2=40^2+9^2[/tex]
These side lengths form a right triangle.
Choice C: [tex]\sqrt{5}, 10$ and \sqrt{125}[/tex]
[tex]\sqrt{5} \approx 2.24 \\ \sqrt{125}\approx11.18[/tex]
Therefore, the longest side length is [tex]\sqrt{125}[/tex]
[tex](\sqrt{125})^2=125\\(\sqrt{5})^2+10^2=5+100=105\\\\(\sqrt{125})^2 \neq (\sqrt{5})^2+10^2[/tex]
These side lengths do not form a right triangle.