Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂
[tex]\dfrac{T_{2}}{T_{1}} = \left (\dfrac{P_{2}}{P_{1}} \right )^{\frac{K-1}{k} }[/tex]
[tex]{T_{2}}{} = T_{1} \times \left (\dfrac{P_{2}}{P_{1}} \right )^{\frac{K-1}{k} } = 280.15 \times \left (9 \right )^{\frac{1.333-1}{1.333} } = 485.03\ K[/tex]
The heat supplied = [tex]\dot {m}_f[/tex] × Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied = [tex]\dot m[/tex] · [tex]c_p(T_3 - T_2)[/tex]
[tex]\dot m[/tex] = 20 kg/s
The heat supplied = 20*[tex]c_p(T_3 - T_2)[/tex] = 21,350 kJ/s
[tex]c_p[/tex] = 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K
[tex]\dfrac{T_5}{T_4} = \dfrac{2}{1.333 + 1}[/tex]
T₅ = 1208.42*(2/2.333) = 1035.94 K
[tex]C_j = \sqrt{\gamma \times R \times T_5}[/tex] = √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust = [tex]\dot m[/tex] × [tex]C_j[/tex] = 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.