A piano tuner hears a beat every 2.20 s when listening to a 266.0 Hz tuning fork and a single piano string. What are the two possible frequencies (in Hz) of the string? (Give your answers to at least one decimal place.)

Respuesta :

Answer:

The lower frequency is [tex]f_1 = 265.55 \ Hz[/tex]

The higher frequency is  [tex]f_2 = 266.4546 \ Hz[/tex]

Explanation:

From the question we are told that

     The period is   [tex]T = 2.20 \ s[/tex]

      The frequency of the tuning fork is  [tex]f = 266.0 \ Hz[/tex]

Generally the beat frequency is mathematically represented as

       [tex]f_b = \frac{1}{T}[/tex]

substituting values

      [tex]f_b = \frac{1}{2.20}[/tex]

      [tex]f_b = 0.4546 \ Hz[/tex]

Since the beat  frequency is gotten from the beat produced by the tuning fork and and  the string   then

The possible frequency of the string ranges from

     [tex]f_1 = f- f _b[/tex]

to

    [tex]f_2 = f + f_b[/tex]

Now  substituting values

    [tex]f_1 = 266.0 - 0.4546[/tex]

    [tex]f_1 = 265.55 \ Hz[/tex]

For  [tex]f_2[/tex]

    [tex]f_2 = 266 + 0.4546[/tex]

    [tex]f_2 = 266.4546 \ Hz[/tex]