Question:
If cos(θ) =-8/17 and sin(θ) is negative, then sin(θ) = ___ and tan(θ) =___.
Answer:
[tex]Sin\theta = \frac{-15}{17}[/tex]
[tex]Tan\theta = \frac{15}{8}[/tex]
Step-by-step explanation:
Given
cos(θ) =-8/17
Required
sin(θ) = __
tan(θ) =__
The first step is to determine the length of the third side
Given that
[tex]cos(\theta) = \frac{Adj}{Hyp}[/tex]
Where Adj and Hyp represent Adjacent and Hypotenuse
[tex]cos(\theta) = \frac{-8}{17}[/tex]
By comparison
[tex]Adj = -8\ and\ Hyp = 17[/tex]
Using Pythagoras
[tex]Hyp^2 = Adj^2 + Opp^2[/tex]
By Substitution
[tex]17^2 = (-8)^2 + Opp^2[/tex]
[tex]289 = 64 + Opp^2[/tex]
Subtract 64 from both sides
[tex]289 - 64 = 64 - 64 + Opp^2[/tex]
[tex]225 = Opp^2[/tex]
Take square roots of both sides
[tex]\sqrt{225} = \sqrt{Opp^2}[/tex]
[tex]\sqrt{225} = Opp[/tex]
[tex]15 = Opp[/tex]
[tex]Opp = 15[/tex]
The question says that sin(θ) is negative; This implies that θ is in the third quadrant and as such
[tex]Opp = -15[/tex]
From trigonometry
[tex]Sin\theta = \frac{Opp}{Hyp}[/tex]
[tex]Sin\theta = \frac{-15}{17}[/tex]
Also from trigonometry
[tex]Tan\theta = Sin\theta / Cos\theta[/tex]
[tex]Tan\theta = \frac{-15}{17} / \frac{-8}{17}[/tex]
[tex]Tan\theta = \frac{-15}{17} * \frac{-17}{8}[/tex]
[tex]Tan\theta = \frac{-15 * -17}{17 * 8}[/tex]
[tex]Tan\theta = \frac{15 * 17}{17 * 8}[/tex]
[tex]Tan\theta = \frac{15}{8}[/tex]