Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Complete the statements below, simplify all ratios and keep them as improper fractions. If cos(θ) = and sin(θ) is negative, then sin(θ) = and tan(θ) = .

Respuesta :

Question:

If cos(θ) =-8/17 and sin(θ) is negative, then sin(θ) = ___  and tan(θ) =___.

Answer:

[tex]Sin\theta = \frac{-15}{17}[/tex]

[tex]Tan\theta = \frac{15}{8}[/tex]

Step-by-step explanation:

Given

cos(θ) =-8/17

Required

sin(θ) = __

tan(θ) =__

The first step is to determine the length of the third side

Given that

[tex]cos(\theta) = \frac{Adj}{Hyp}[/tex]

Where Adj and Hyp represent Adjacent and Hypotenuse

[tex]cos(\theta) = \frac{-8}{17}[/tex]

By comparison

[tex]Adj = -8\ and\ Hyp = 17[/tex]

Using Pythagoras

[tex]Hyp^2 = Adj^2 + Opp^2[/tex]

By Substitution

[tex]17^2 = (-8)^2 + Opp^2[/tex]

[tex]289 = 64 + Opp^2[/tex]

Subtract 64 from both sides

[tex]289 - 64 = 64 - 64 + Opp^2[/tex]

[tex]225 = Opp^2[/tex]

Take square roots of both sides

[tex]\sqrt{225} = \sqrt{Opp^2}[/tex]

[tex]\sqrt{225} = Opp[/tex]

[tex]15 = Opp[/tex]

[tex]Opp = 15[/tex]

The question says that sin(θ) is negative; This implies that θ is in the third quadrant and as such

[tex]Opp = -15[/tex]

From trigonometry

[tex]Sin\theta = \frac{Opp}{Hyp}[/tex]

[tex]Sin\theta = \frac{-15}{17}[/tex]

Also from trigonometry

[tex]Tan\theta = Sin\theta / Cos\theta[/tex]

[tex]Tan\theta = \frac{-15}{17} / \frac{-8}{17}[/tex]

[tex]Tan\theta = \frac{-15}{17} * \frac{-17}{8}[/tex]

[tex]Tan\theta = \frac{-15 * -17}{17 * 8}[/tex]

[tex]Tan\theta = \frac{15 * 17}{17 * 8}[/tex]

[tex]Tan\theta = \frac{15}{8}[/tex]

ACCESS MORE