Respuesta :

Answer:

ΔAKL is congruent to ΔBML by the Side Angle Side rule of congruency and ΔALB is isosceles as two of its sides [tex]\overline {AL}[/tex] and [tex]\overline {BL}[/tex] are congruent

Step-by-step explanation:

The given parameters are;

The given triangle ΔKLM has sides [tex]\overline {KL}[/tex] ≅ [tex]\overline {LM}[/tex],   Given

ΔKLM is isosceles Δ (two equal segments),         Definition of isosceles Δ

∠LKM ≅ ∠LMK,                                                       Base ∠s of isosceles Δ are ≅

Point A is on segment [tex]\overline {KM}[/tex],                                  Given    

Point B is also on segment [tex]\overline {KM}[/tex],                          Given

Segment [tex]\overline {AK}[/tex] ≅ segment [tex]\overline {BM}[/tex],                              Given

ΔAKL ≅ ΔBML,                                                       SAS rule of congruency

Segment [tex]\overline {AL}[/tex] ≅ segment [tex]\overline {BL}[/tex],                                CPCTC

ΔALB is isosceles (two equal segments),            Definition of isosceles Δ

Where:

SAS = Side Angle Side

CPCTC = Congruent parts of congruent triangles are congruent.

Answer:

m∠AKL=m∠BML | Base Angle Theorem (Base ∠ TH.)

Step-by-step explanation:

KL=LM | Given

A ∈ KM | Given

B ∈ KM | Given

AK=BM | Given

m∠AKL=m∠BML | Base ∠ TH.

ACCESS MORE