Answer:
503°C
Explanation:
According to the given situation, the computation of the final temperature is shown below:
In this question we use the law of ideal gas i.e
pV = nRT
i.e
[tex]\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}[/tex]
Therefore
[tex]T_2 = T_1 (\frac{p_2}{p_1}) (\frac{V_2}{V_1})[/tex]
[tex]= 300\ k (\frac{2.72 \times 10^{6} Pa + 1.01 \times 10^{5} Pa}{1.01 \times 10^{5} Pa})(\frac{46.2 cm^3}{499 cm^3})[/tex]
= 776 k
= (776 - 273)° C
= 503°C
Therefore the final temperature is 503°C
We simply applied the above formulas so that the final temperature could arrive