Directions: Use the acronym PANIC to find the confidenceintervals.1.An SRS of 60 women showed that the average weight of a purse is 5 pounds with a standard deviation of 1.2 pounds. Find the 90% Confidence Interval for the actual average weight of purses.

Respuesta :

Answer:

90% Confidence Interval for the actual average weight of purses.

(4.7412 , 5.2588)

Step-by-step explanation:

Explanation:-

Given sample size 'n' = 60

mean of the sample x⁻ = 5 pounds

Standard deviation of the sample 'S' = 1.2 pounds

Level of significance = 0.10

90% Confidence Interval for the actual average weight of purses.

[tex](x^{-} - t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } , x^{-} +t_{\frac{\alpha }{2} } \frac{S}{\sqrt{n} } )[/tex]

[tex](5 - 1.6711\frac{1.2}{\sqrt{60} } , 5 +1.671\frac{1.2}{\sqrt{60} } )[/tex]

( 5 - 0.2588 , 5 + 0.2588)

90% Confidence Interval for the actual average weight of purses.

(4.7412 , 5.2588)