Answer:
Option (D)
Step-by-step explanation:
If a function f(x) is represented on a graph and we follow the transformation as,
f(x) → [tex]k.f(x)[/tex]
1). If k ≥ 1, graph of the parent function f(x) will be stretched vertically by a factor k.
That means the transformed graph will be narrower.
2). If 0 < k < 1, graph will be vertically compressed or the transformed function will show a wider graph.
Following this rule,
f(x) → [tex]\frac{1}{2}.f(x)[/tex] shows k = [tex]\frac{1}{2}[/tex] [Since 0 < [tex]\frac{1}{2}[/tex] < 1]
Therefore, transformed form will be wider.
Option (D) will be the answer.