the ellipse is centered at the origin, has axes of lengths 8 and 4, its major axis is horizontal. how do you write an equation for this ellipse?​

Respuesta :

Answer:

The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].

Step-by-step explanation:

The standard equation of the ellipse is described by the following expression:

[tex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1[/tex]

Where [tex]a[/tex] and [tex]b[/tex] are the horizontal and vertical semi-axes, respectively. Given that major semi-axis is horizontal, [tex]a > b[/tex]. Then, the equation for this ellipse is written in this way: (a = 8, b = 4)

[tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex]

The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].