Respuesta :
Answer:
the answers are provided in the attachments below
Explanation:
Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface
![Ver imagen Busiyijide](https://us-static.z-dn.net/files/dbe/30dba150c4c90ef02ec9ceea83ca10ac.jpg)
![Ver imagen Busiyijide](https://us-static.z-dn.net/files/d0b/7c70fe46cc89db67f6c2ef75f64d8de8.jpg)
![Ver imagen Busiyijide](https://us-static.z-dn.net/files/d66/e2469ddc845af6a872641e61622bcfe0.jpg)
Applying Gauss law to the long solid cylinder
A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) E = 2K λ / r
C) Answers from parts a and b are the same
D) attached below
Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.
A ) The expression for the electric field inside the volume at a distance r
Gauss law : E. A = [tex]\frac{q}{e_{0} }[/tex] ----- ( 1 )
where : A = surface area = 2πrL , q = p(πr²L)
back to equation ( 1 )
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) Electric field at point Outside the volume in terms of charge per unit length λ
Given that: linear charge density = area * volume charge density
λ = πR²P
from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]
∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex] ----- ( 2 )
where : πR²P = λ
Back to equation ( 2 )
E = λ / 2e₀π*r where : k = 1 / 4πe₀
∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ
E = 2K λ / r
C) Comparing answers A and B
Answers to part A and B are similar
Hence we can conclude that Applying Gauss law to the long solid cylinder
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.
Learn more about Gauss's Law : https://brainly.com/question/15175106