Respuesta :
Answer: a. Ln = [tex]\frac{1}{2} (L_{n-1} + L_{n-2})[/tex]
b. [tex]L_{n} = 233333.4(1)^{n}+266666.7(-\frac{1}{2} )^{n}[/tex]
Step-by-step explanation: Recurrence Relation is a polynomial that relates a term in a sequence with its previous terms.
a. The number of lobster is the average of two previous years. Average is the sum of the elements of a set divided by the total number of the set, so for Ln:
Ln = [tex]\frac{L_{n-1}+L_{n-2}}{2}[/tex] = [tex]\frac{1}{2}(L_{n-1}+L_{n-2})[/tex]
where [tex]L_{n-1} and L_{n-2}[/tex] are the two previous years.
b) Ln = [tex]\frac{1}{2}(L_{n-1}+L_{n-2})[/tex]
[tex]\frac{1}{2}(L_{n-1})+\frac{1}{2} (L_{n-2}) - L_{n} = 0[/tex]
To solve this recurrence, find the characteristic polynomial:
[tex]r^{2} - \frac{1}{2}r - \frac{1}{2} = 0[/tex]
Solve for r:
The polynomial can be rewritten as:
[tex](r-1)(r+\frac{1}{2} )=0[/tex]
so, r = 1 and r = -1/2
The expression for the recurrence relation will be:
[tex]L_{n} = \alpha_{1} .(1)^{n} + \alpha_{2}.(-\frac{1}{2} )^{n}[/tex]
In year 1, there were 100,000 lobsters, so, when n=1:
[tex]\alpha_{1} .(1)^{1} + \alpha_{2}.(-\frac{1}{2} )^{1} = 100,000[/tex]
In year 2, when n=2, Ln = 300,000:
[tex]\alpha_{1} .(1)^{2} + \alpha_{2}.(-\frac{1}{2} )^{2} = 300,000[/tex]
Solving the system of equations:
[tex]\alpha_{1} .(1)^{1} + \alpha_{2}.(-\frac{1}{2} )^{1} = 100,000[/tex]
[tex]\alpha_{1} = 100,000 + \frac{1}{2}.\alpha_{2}[/tex]
[tex]\alpha_{1} .(1)^{2} + \alpha_{2}.(-\frac{1}{2} )^{2} = 300,000[/tex]
[tex]\alpha_{1} = 300,000 - \frac{1}{4}.\alpha_{2}[/tex]
Finding [tex]\alpha _{2}[/tex]:
[tex]100,000+\frac{1}{2}.\alpha_{2} = 300,000 - \frac{1}{4}.\alpha_{2}[/tex]
[tex]\frac{3}{4}.\alpha_{2} = 200,000[/tex]
[tex]\alpha_{2} =[/tex] 266666.7
With [tex]\alpha _{2}[/tex], plug in an equation to find [tex]\alpha_{1}[/tex]:
[tex]\alpha_{1} = 100,000 + \frac{1}{2}.\alpha_{2}[/tex]
[tex]\alpha_{1} = 100,000 + \frac{266666.7}{2}[/tex]
[tex]\alpha_{1} =[/tex] 233333.4
The solved equation for this recurrence relation is:
[tex]L_{n} = 233333.4(1)^{n} + 266666.7(-\frac{1}{2})^{n}[/tex]