Answer:
Check below
Step-by-step explanation:
Hi there. These are operations with functions. So Let's work with these functions.
[tex]f(x)=5x+4\\g(x)=4x-5\\[/tex]
1. [tex]\mathbf{a})\:(f+g)(x)=f(x)+g(x)[/tex]
[tex]f+g(x)=5x+4 +4x-5 =\mathbf{9x-1}[/tex]
[tex]\mathbf{b)} \:(f-g)(x)=5x+4 -4x+5=x+9\\(f-g)(x)=\mathbf{x+9}[/tex]
[tex]\mathbf{c)} fg(x)=f(x)g(x)\\ fg(x)=(5x+4)(4x-5)=20x^{2}-25+16x-20=\mathbf{20x^{2}+16x-45}[/tex]
[tex]\mathbf{d)} (fog)(x)=5(4x-5)+4 =20x-25+4\\(fog)(x)=\mathbf{20x-21}\\\\\ \mathbf{e)} (gof)(x)=4(5x+4)-5=20x+16-5=\mathbf{20x+11}[/tex]
2) Domain
a) The Domain of these functions is defined as the intersection of the first function's Domain f(x) and g(x)'s domain:
[tex]A \cap B\\Domain_A=(-\infty \:<x<\infty \:)\\Domain_B=(-\infty \:<x<\infty \:)\\[/tex]
So the Domain of (f+g)(x),(f-g), and (fg)(x): Real set.
The functions have no discontinuity, nor restrictions.