Respuesta :

Answer:

[tex]m = 5 \sqrt{3}[/tex]

[tex]n = 5[/tex]

Step-by-step explanation:

Given

The triangle above

Required

Find the missing lengths

The missing lengths can be calculated by applying trigonometry ratios

From the triangle above,

the Hypotenuse is 10

Angle = 60

Calculating m

The relationship between m, the Hypotenuse and angle 60 is defined as follows;

[tex]sin \theta = \frac{Opp}{Hyp}[/tex]

Where [tex]\theta = 60[/tex]

[tex]Opp = m[/tex]

[tex]Hyp = 10[/tex]

The above formula becomes

[tex]sin60= \frac{m}{10}[/tex]

Multiply both sides by 10

[tex]10 * sin60= \frac{m}{10} * 10[/tex]

[tex]10 * sin60= m[/tex]

In radical from, [tex]sin60 = \frac{\sqrt{3}}{2}[/tex]

[tex]10 * sin60= m[/tex] becomes

[tex]10 * \frac{\sqrt{3}}{2}= m[/tex]

[tex]\frac{10* \sqrt{3}}{2}= m[/tex]

[tex]5 \sqrt{3}= m[/tex]

[tex]m = 5 \sqrt{3}[/tex]

Calculating n

The relationship between n, the Hypotenuse and angle 60 is defined as follows;

[tex]cos\theta = \frac{Adj}{Hyp}[/tex]

Where [tex]\theta = 60[/tex]

[tex]Adj = n[/tex]

[tex]Hyp = 10[/tex]

The above formula becomes

[tex]cos60= \frac{n}{10}[/tex]

Multiply both sides by 10

[tex]10 * cos60= \frac{n}{10} * 10[/tex]

[tex]10 * cos60= n[/tex]

In radical from, [tex]cos60= \frac{1}{2}[/tex]

[tex]10 * cos60= n[/tex] becomes

[tex]10 * \frac{1}{2}= n[/tex]

[tex]\frac{10*1}{2}= n[/tex]

[tex]5 = n[/tex]

[tex]n = 5[/tex]

ACCESS MORE