Respuesta :
Answer: Use the function f(x)=x2-2x+8 and the graph of g(x) to determine the difference betw een the maximum value of g(x) and the minimum value of f(x).
Answer:
18
Step-by-step explanation:
First find axis of symmetry for f(x) = x^2 − 6x + 3 using equation x=-b/2a.
x=-(-6)/2(1)=3. Then plug x=3 back into f(x) to get the y-coordiante. f(3)= (3)^2 -6(3)+3= -6.
Max value of g(x) is x = 12. So if we have to find the difference of the maximum value of g(x) and the minimum value of f(x) we get, 12- (-6)= 18.