Answer:
The variance is "9475" and standard deviation is "97.3396112".
Step-by-step explanation:
Let's all make the assumption that X seems to be the discrete uniformly distributed random indicating demand for units, and that f(x) has been the corresponding probability.
The expected value of the monthly demand will be:
⇒ [tex]E(X)=\sum_{x} x\times f(x)[/tex]
⇒ [tex]=00\times 0.20+400\times 0.30+500\times 0.35+600\times 0.15[/tex]
⇒ [tex]=445 \ units[/tex]
The variance will be:
⇒ [tex]Var(X)=E(X^2)-{E(X)}^2[/tex]
⇒ [tex]E(X^2)=\sum_{x} x^2\times f(x)[/tex]
[tex]=(300)^2\times 0.20+(400)^2\times 0.30+(500)^2\times 0.35+(600)^2\times 0.15[/tex]
[tex]=207500[/tex]
⇒ [tex]Var(X)=207500 - (445)^2[/tex]
[tex]=9475[/tex]
The standard deviation will be:
⇒ [tex]X=\sqrt{var(X)}[/tex]
[tex]=97.3396112[/tex]