Respuesta :
Answer:
the temperature of the aluminum at this time is 456.25° C
Explanation:
Given that:
width w of the aluminium slab = 0.05 m
the initial temperature [tex]T_1[/tex] = 25° C
[tex]T{\infty} =600^0C[/tex]
h = 100 W/m²
The properties of Aluminium at temperature of 600° C by considering the conditions for which the storage unit is charged; we have ;
density ρ = 2702 kg/m³
thermal conductivity k = 231 W/m.K
Specific heat c = 1033 J/Kg.K
Let's first find the Biot Number Bi which can be expressed by the equation:
[tex]Bi = \dfrac{hL_c}{k} \\ \\ Bi = \dfrac{h \dfrac{w}{2}}{k}[/tex]
[tex]Bi = \dfrac{hL_c}{k} \\ \\ Bi = \dfrac{100 \times \dfrac{0.05}{2}}{231}[/tex]
[tex]Bi = \dfrac{2.5}{231}[/tex]
Bi = 0.0108
The time constant value [tex]\tau_t[/tex] is :
[tex]\tau_t = \dfrac{pL_cc}{h} \\ \\ \tau_t = \dfrac{p \dfrac{w}{2}c}{h}[/tex]
[tex]\tau_t = \dfrac{2702* \dfrac{0.05}{2}*1033}{100}[/tex]
[tex]\tau_t = \dfrac{2702* 0.025*1033}{100}[/tex]
[tex]\tau_t = 697.79[/tex]
Considering Lumped capacitance analysis since value for Bi is less than 1
Then;
[tex]Q= (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}][/tex]
where;
[tex]Q = -\Delta E _{st}[/tex] which correlates with the change in the internal energy of the solid.
So;
[tex]Q= (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]= -\Delta E _{st}[/tex]
The maximum value for the change in the internal energy of the solid is :
[tex](pVc)\theta_1 = -\Delta E _{st}max[/tex]
By equating the two previous equation together ; we have:
[tex]\dfrac{-\Delta E _{st}}{\Delta E _{st}{max}}= \dfrac{ (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]} { (pVc)\theta_1}[/tex]
Similarly; we need to understand that the ratio of the energy storage to the maximum possible energy storage = 0.75
Thus;
[tex]0.75= [1-e^{\dfrac {-t}{ \tau_1}}]}[/tex]
So;
[tex]0.75= [1-e^{\dfrac {-t}{ 697.79}}]}[/tex]
[tex]1-0.75= [e^{\dfrac {-t}{ 697.79}}]}[/tex]
[tex]0.25 = e^{\dfrac {-t}{ 697.79}}[/tex]
[tex]In(0.25) = {\dfrac {-t}{ 697.79}}[/tex]
[tex]-1.386294361= \dfrac{-t}{697.79}[/tex]
t = 1.386294361 × 697.79
t = 967.34 s
Finally; the temperature of Aluminium is determined as follows;
[tex]\dfrac{T - T _{\infty}}{T_1-T_{\infty}}= e ^ {\dfrac{-t}{\tau_t}}[/tex]
[tex]\dfrac{T - 600}{25-600}= e ^ {\dfrac{-967.34}{697.79}[/tex]
[tex]\dfrac{T - 600}{25-600}= 0.25[/tex]
[tex]\dfrac{T - 600}{-575}= 0.25[/tex]
T - 600 = -575 × 0.25
T - 600 = -143.75
T = -143.75 + 600
T = 456.25° C
Hence; the temperature of the aluminum at this time is 456.25° C