According to a Harris Poll in 2009, 72% of those who drive and own cell phones say they use them to talk while they are driving. If you wish to conduct a survey in your city to determine what percent of the drivers with cell phones use them to talk while driving, how large a sample should be if you want your estimate to be within 0.02 with 95% confidence.

Respuesta :

Answer:

We need a sample of at least 1937.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

For this problem, we have that:

[tex]\pi = 0.72[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

How large a sample should be if you want your estimate to be within 0.02 with 95% confidence.

We need a sample of at least n.

n is found when M = 0.02. So

[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

[tex]0.02 = 1.96\sqrt{\frac{0.72*0.28}{n}}[/tex]

[tex]0.02\sqrt{n} = 1.96\sqrt{0.72*0.28}[/tex]

[tex]\sqrt{n} = \frac{1.96\sqrt{0.72*0.28}}{0.02}[/tex]

[tex](\sqrt{n})^{2} = (\frac{1.96\sqrt{0.72*0.28}}{0.02})^{2}[/tex]

[tex]n = 1936.16[/tex]

Rounding up to the nearest number.

We need a sample of at least 1937.

RELAXING NOICE
Relax