Answer:
E = 9.62*10^-8 J
Explanation:
The energy stored in a capacitor is given by the following formula:
[tex]E=\frac{1}{2}CV^2[/tex] (1)
E: energy stored
C: capacitance
V: potential difference of the capacitor = 4 V
The capacitance for a concentric cylindrical capacitor is:
[tex]C=\frac{2\pi \epsilon_o L}{ln(\frac{r_2}{r_1})}[/tex] (2)
L: length of the capacitor = 150m
r2: radius of the outer cylinder = 8mm = 8*10^-3m
r1: radius of the inner cylinder = 4mm = 4*10^-3m
εo: dielectric permittivity of vacuum = 8.85*10^-12C^2/Nm^2
You replace the expression (2) into the equation (1) and replace the values of all parameters:
[tex]E=\frac{1}{2}(\frac{2\pi \epsilon_o L}{ln(\frac{r_2}{r_1})})V^2\\\\E=\frac{\pi \epsilon_o L}{ln(\frac{r_2}{r_1})}V^2\\\\E=\frac{\pi (8.85*10^{-12}C^2/Nm^2)(150m)}{ln(\frac{8*10^{-3}m}{4*10^{-3}m})}(4V)^2\\\\E=9.62*10^{-8}J[/tex]
The energy stored in the cylindrical capacitor is 9.62*10-8 J