Answer:
L(y) = g(x)
[tex]y = C_{1} e^{-4 x} + C_{2} e^{7 x} + \frac{1}{(-28)}(( x + (\frac{ -3 (1) }{28} )) + \frac{1}{14}[/tex]
Step-by-step explanation:
Step(i):-
Given differential equation
y'' − 3 y' − 28 y = x − 2
Operator form ( D² - 3 D - 28 )y = x -2
f( D ) y = Ф(x)
Auxiliary equation
f( m ) = m² - 3 m - 28
⇒ m² - 3 m - 28 =0
⇒ m² - 7 m +4 m - 28 =0
⇒ m ( m -7 ) + 4 ( m -7) =0
⇒ (m + 4)( m -7) =0
⇒ m = -4 and m =7
Complementary function
[tex]y_{c} = C_{1} e^{-4 x} + C_{2} e^{7 x}[/tex]
Step(ii):-
Particular integral
[tex]P.I = y_{p} = \frac{1}{f(D)} (x-2)[/tex]
[tex]= \frac{1}{D^{2}- 3 D - 28 } (x)-2\frac{1}{D^{2} - 3 D - 28} e^{0 x} )[/tex]
[tex]= \frac{1}{(-28)(1 - (\frac{D^{2}-3 D) }{-28} )} (x) + \frac{1}{0-0-28} X 2[/tex]
[tex]= \frac{1}{(-28)}( 1 + (\frac{D^{2} -3 D) }{28} )^{-1} (x) + \frac{1}{14}[/tex]
( 1 + x )⁻¹ = 1 - x + x² - x³ +.....
we use notation [tex]D = \frac{dy}{dx}[/tex]
[tex]= \frac{1}{(-28)}( 1 + (\frac{D^{2} -3 D) }{28} )+ (\frac{D^{2} -3 D) }{28})^{2} +.....) (x) + \frac{1}{14}[/tex]
Higher degree terms will be neglected
D(x) =1
D²(x) =0
[tex]= \frac{1}{(-28)}(( x + (\frac{ -3 (1) }{28} )) + \frac{1}{14}[/tex]
The particular integral
[tex]y_{p} = \frac{1}{(-28)}(( x + (\frac{ -3 (1) }{28} )) + \frac{1}{14}[/tex]
Conclusion:-
General solution of given differential equation
[tex]y = y_{c} + y_{p}[/tex]
[tex]y = C_{1} e^{-4 x} + C_{2} e^{7 x} + \frac{1}{(-28)}(( x + (\frac{ -3 (1) }{28} )) + \frac{1}{14}[/tex]