A rancher has 4,200 feet of fencing available to enclose a rectangular area bordering a river. He wants to separate his cows and horses by dividing the enclosure into two equal areas. If no fencing is required along the​ river, find the length of the center partition that will yield the maximum area.

Respuesta :

Answer:

The center portion's length will be "700 ft".

Step-by-step explanation:

Let the center will be "x".

Given that, Length = 4200 feet

Now, Length

⇒  [tex]L=3x+y[/tex]

⇒  [tex]4200=3x+y[/tex]

⇒  [tex]y=4200-3x[/tex]

As we know,

Area,

⇒  [tex]A=Length\times breadth=x\times y[/tex]

⇒      [tex]=x(4200-3x)[/tex]

⇒      [tex]=4200x-3x^2[/tex]

So that the length or center portion or the area will be greater or maximum when:

⇒  [tex]x=-\frac{4200}{2\times (-3)}[/tex]

⇒     [tex]=\frac{-4200}{-6}[/tex]

⇒     [tex]=700 \ ft[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico