not sure how I am supposed to arrive to an answer

Integrating both sides once gives
[tex]\dfrac{\mathrm d\mathbf r}{\mathrm dt}=2e^t\,\mathbf i+3e^{-t}\,\mathbf j+4e^{2t}\,\mathbf k+\mathbf c[/tex]
where [tex]\mathbf c[/tex] is an arbitrary constant vector. Use the initial condition to find its value:
[tex]\dfrac{\mathrm d\mathbf r}{\mathrm dt}(0)=-\mathbf i+7\,\mathbf j=(2+c_1)\,\mathbf i+(3+c_2)\,\mathbf j+(4+c_3)\,\mathbf k[/tex]
[tex]\implies\mathbf c_1=-3\,\mathbf i+4\,\mathbf j-4\,\mathbf k[/tex]
Integrate again:
[tex]\mathbf r(t)=2e^t\,\mathbf i-3e^{-t}\,\mathbf j+2e^{2t}\,\mathbf k+\mathbf c_1t+\mathbf c_2[/tex]
where [tex]\mathbf c_2[/tex] is another arbitrary vector of constants. Use the other initial condition to determine its components:
[tex]\mathbf r(0)=6\,\mathbf i+\mathbf j+3\,\mathbf k=(2+c_1)\,\mathbf i+(-3+c_2)\,\mathbf j+(2+c_3)\,\mathbf k[/tex]
[tex]\implies\mathbf c_2=4\,\mathbf i+4\,\mathbf j+\mathbf k[/tex]
Then the particular solution to this ODE is
[tex]\boxed{\mathbf r(t)=(2e^t-3t+4)\,\mathbf i+(-3e^{-t}+4t+4)\,\mathbf j+(2e^{2t}-4t+1)\,\mathbf k}[/tex]