Respuesta :

Answer:

[tex]F(2)=-39[/tex]

Step-by-step explanation:

We are given: [tex]f(x)=\frac{6}{4}x^3+6[/tex]

First, simplify:

[tex]f(x)=\frac{3}{2}x^3+6[/tex]

Then, find the anti-derivative (integrate). Thus...

[tex]F(x)=\int (f(x)) dx= \int \frac{3}{2}x^3dx+6 dx[/tex]

Simplify:

[tex]\frac{3}{2} \int x^3dx+6\int 1dx[/tex]

Use Power Rule.

Simplify:

[tex]\frac{3}{2} (\frac{1}{4}x^4)+6x+C[/tex]

[tex]F(x)= \frac{3}{8}x^4 +6x+C[/tex]

Now, determine C.

[tex]F(4)=63=\frac{3}{8}(4)^4 +6(4)+C[/tex]

[tex]C=-57[/tex]

Thus, we have:

[tex]F(x)= \frac{3}{8}x^4 +6x-57[/tex]

Now, plug in 2.

[tex]F(2)=\frac{3}{8}(2)^4 +6(2)-57[/tex]

[tex]F(2)=-39[/tex]

RELAXING NOICE
Relax