Answer:
[tex]F(2)=-39[/tex]
Step-by-step explanation:
We are given: [tex]f(x)=\frac{6}{4}x^3+6[/tex]
First, simplify:
[tex]f(x)=\frac{3}{2}x^3+6[/tex]
Then, find the anti-derivative (integrate). Thus...
[tex]F(x)=\int (f(x)) dx= \int \frac{3}{2}x^3dx+6 dx[/tex]
Simplify:
[tex]\frac{3}{2} \int x^3dx+6\int 1dx[/tex]
Use Power Rule.
Simplify:
[tex]\frac{3}{2} (\frac{1}{4}x^4)+6x+C[/tex]
[tex]F(x)= \frac{3}{8}x^4 +6x+C[/tex]
Now, determine C.
[tex]F(4)=63=\frac{3}{8}(4)^4 +6(4)+C[/tex]
[tex]C=-57[/tex]
Thus, we have:
[tex]F(x)= \frac{3}{8}x^4 +6x-57[/tex]
Now, plug in 2.
[tex]F(2)=\frac{3}{8}(2)^4 +6(2)-57[/tex]
[tex]F(2)=-39[/tex]