Answer:
Total area = 237.09 [tex]cm^2[/tex]
Step-by-step explanation:
Area of equilateral triangle is given as:
[tex]A = \dfrac{\sqrt3}{4} \times side^2[/tex]
[tex]\triangle ABC[/tex] is equilateral triangle with side = 13 cm
[tex]A_{II} = \dfrac{\sqrt3}{4} \times 13^2 = 73.09 cm^2[/tex]
Side EA = ED + DA
CDEF is a rectangle, so CF = ED
EA = CF+DA
19=7+DA
DA = 12 cm
Looking in the region I, i.e. right angle [tex]\triangle CDA[/tex].
According to pythagoras theorem:
[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}[/tex]
[tex]13^{2} = 12^{2} + \text{CD}^{2}\\\text{CD}^{2} = 25\\CD = 5 cm[/tex]
Area of a right angled Triangle:
[tex]A = \dfrac{1}{2}\times Base \times Perpendicular[/tex]
[tex]A_I = \dfrac{1}{2}\times 12 \times 5\\A_I = 30 cm^2[/tex]
Area of rectangle is given as: Length [tex]\times[/tex] Width
[tex]A_{III} = 7 \times 5 = 35cm^2[/tex]
For finding area of trapezium i.e. region IV, let us draw a line parallel to side FG at E that will cut GH at a point P and 'h' is the height of triangle or distance between parallel sides of trapezium.
Now, we have a triangle EPH whose 3 sides are given as a=12, b=9 and c=15.
[tex]s=\dfrac{a+b+c}{2}\\\Rightarrow s=\dfrac{12+9+15}{2} = 18[/tex]
Using hero's formula for area of a triangle:
[tex]A =\sqrt{s(s-a)(s-b)(s-c)}\\A =\sqrt{18(6)(9)(3)} = 54cm^2[/tex]
Comparing with:
[tex]A = \dfrac{1}{2}\times Base \times Perpendicular[/tex]
[tex]54 = \dfrac{1}{2}\times 12 \times h\\\Rightarrow h = 9cm[/tex]
h is distance between parallel sides of trapezium.
Area of trapezium:
[tex]A_{IV} = \dfrac{1}{2} (FE+GH)\times h\\\Rightarrow A_{IV} = \dfrac{1}{2} (5+17)\times 9 =99cm^2[/tex]
Total area = [tex]A = A_{I}+A_{II}+A_{III}+A_{IV} = 30 +73.09+35+99 = 237.09cm^2[/tex]