Respuesta :
Answer:
n=N-1
Step-by-step explanation:
You can start by imagining this scenario on a small scale, say 5 squares.
Assuming it starts on the first square, the grasshopper can cover the full 5 squares in 2 ways; either it can jump one square at a time, or it can jump all the way to the end and then backtrack. If it jumps one square at a time, it will take 4 hops to cover all 5 squares. If it jumps two squares at a time and then backtracks, it will take 2 jumps to cover the full 5 squares and then 2 to cover the 2 it missed, which is also 4. It will always be one less than the total amount of squares, since it begins on the first square and must touch the rest exactly once. Therefore, the smallest amount n is N-1. Hope this helps!
The smallest value of n is N-1.
What is a square?
Square is a quadrilateral of equal length of sides and each angle of 90°.
Here given that there are 1×N squares i.e. N numbers of squares in one row.
The grasshopper can jump either one square or two squares to land on the next square.
Let's assume the scenario of 5 squares present in a row.
Let the grasshopper starts from the first square,
so the grasshopper can cover the full 5 squares in 2 methods;
one method is that it will jump one square at a time and reach at last square.
another method is it will jump all the squares to the finish and then backtrace.
If the grasshopper jumps one square at a time, it will take 4 jumps to cover all 5 squares.
Similarly, If a grasshopper jumps two squares at a time and then backtrace, it will take 2 jumps to reach the 5th square and then it will jump 1 square and then 2 squares to cover the 2 squares it missed, for which the number jump is also 4.
From the above it is clear that the number of jumps will always be one less than the total number of squares if the grasshopper begins from the first square and touch every square exactly once.
Therefore, the smallest value of n is N-1.
Learn more about squares
here: https://brainly.com/question/1538726
#SPJ2
Otras preguntas
