Answer:
[tex] (180 - 2x)\degree [/tex]
Step-by-step explanation:
In circle with center O, [tex] m\angle BCD = x\degree ... (given) \\[/tex]
By inscribed angle theorem:
[tex] m\angle BCD= \frac{1}{2} \times m\widehat {BD} \\
\therefore x\degree = \frac{1}{2} \times m\widehat {BD} \\
\therefore \widehat {BD} = 2x\degree \\
\because m\widehat {BCD}+m\widehat {BD}= 360\degree \\(By\: arc\: sum\: postulate\: of\: a \: circle) \\
\therefore m\widehat {BCD}+2x\degree = 360\degree \\
\therefore m\widehat {BCD} = 360\degree - 2x\degree \\\\
\because m\angle BAD = \frac{1}{2}(m\widehat {BCD} - m\widehat {BD}) \\\\
\therefore m\angle BAD = \frac{1}{2}(360\degree - 2x\degree - 2x\degree) \\\\
\therefore m\angle BAD = \frac{1}{2}(360\degree - 4x\degree ) \\\\
\therefore m\angle BAD = \frac{1}{2}\times 2(180\degree - 2x\degree \\\\
\red {\boxed {\bold {\therefore m\angle BAD =(180- 2x)\degree}}} \\\\[/tex]