Answer:
[tex]S.D = 15.98[/tex]
Step-by-step explanation:
Given: 76,45,64,80,92
Required: Determine the standard deviation
We start by calculating the mean
[tex]Mean = \frac {\sum x}{n}[/tex]
Where x-> 76,45,64,80,92 and n = 5
[tex]Mean = \frac {76+45+64+80+92}{5}[/tex]
[tex]Mean = \frac{357}{5}[/tex]
[tex]Mean = 71.4[/tex]
Subtract Mean (71.4) from each of the given data
[tex]76 - 71.4 = 4.6\\45 - 71.4 = -26.5\\64 - 71.4 = -7.4\\80 - 71.4 = 8.6\\92 - 71.4 = 20.6[/tex]
Determine the absolute value of the above result
[tex]|4.6| = 4.6\\|-26.5| = 26.5\\|-7.4| = 7.4\\|8.6| = 8.6\\|20.6| = 20.6[/tex]
Square Individual Result
[tex]4.6^2 = 21.16 \\26.5^2 = 702.25\\7.4^2 = 54.76\\8.6^2 = 73.96\\20.6^2 = 424.36[/tex]
Calculate the mean of the above result to give the variance
[tex]Mean = \frac {\sum x}{n}[/tex]
[tex]Mean = \frac{21.16 + 702.25 + 54.76 + 73.96 + 424.36}{5}\\Mean = \frac{1276.49}{5}\\Mean = 255.298[/tex]
Hence, Variance = 255.298
Standard Deviation is calculated by [tex]\sqrt{Var}[/tex]
[tex]SD = \sqrt{255.298}[/tex]
[tex]S.D = 15.9780474402[/tex]
[tex]S.D = 15.98 (Approximated)[/tex]