Answer:
[tex]= \frac{\frac{75}{100}\times 1000 + \frac{25}{100} \times \frac{60}{100}\times 1000 }{(1+\frac{15}{100})^3 }[/tex]
[tex]=\frac{0.75\times 1000 + 0.25\times 0.60 \times 1000}{(1+0.15)^3}[/tex]
[tex]=\frac{750+0.25\times 0.60\times 1000}{1.15^3} \\\\=\frac{750+150}{1.520875} =\frac{900}{1.520875} \\\\=591.76[/tex]
Step-by-step explanation:
= (probability of entire face value paid*face value+probability of entire face value not paid*percent of face value paid*face value)/(1+discount rate)^years to maturity
probability of entire face value paid = 75%
face value = 1000
probability of entire face value not paid = 25%
percent of face value paid= 60%
discount rate = 15%
years to maturity = 3
[tex]= \frac{\frac{75}{100}\times 1000 + \frac{25}{100} \times \frac{60}{100}\times 1000 }{(1+\frac{15}{100})^3 }[/tex]
[tex]=\frac{0.75\times 1000 + 0.25\times 0.60 \times 1000}{(1+0.15)^3}[/tex]
[tex]=\frac{750+0.25\times 0.60\times 1000}{1.15^3} \\\\=\frac{750+150}{1.520875} =\frac{900}{1.520875} \\\\=591.76[/tex]