Answer:
Rectangle C is 14 cm longer than B
Step-by-step explanation:
Let x be the length of Rectangle A. Rectangle B is ¹/₅ longer than A Block B,
Therefore the length of rectangle B is:
[tex]x+\frac{1}{5}x[/tex]
Rectangle C is ¹/₃ longer than B, therefore the length of rectangle c is:
[tex]x+\frac{1}{5}x+\frac{1}{3}(x+\frac{1}{5}x) =x+ \frac{1}{5}x+\frac{1}{3}x+\frac{1}{15}x=x+\frac{9}{15}x[/tex]
The total length of all three rectangles is 133 cm.
Length of rectangle A + Length of rectangle B + Length of rectangle C = 133 cm
[tex]x+x+\frac{1}{5}x +x+\frac{9}{15}x=133\\x+x+x+\frac{1}{5}x +\frac{9}{15}x=133\\3x+\frac{12}{15}x=133\\ 45x+12x=1995\\57x=1995\\x=35cm[/tex]
Therefore the length of rectangle A is 35 cm, the length of rectangle B is [tex]35+\frac{1}{5}*35=42\ cm[/tex] and the length of rectangle C is [tex]35+\frac{9}{15}*35=56\ cm[/tex]
Rectangle C is ¹/₃ longer than B, which is 14 cm (42\3) longer than B