Respuesta :

Answer:

[tex]cos(-\theta) = -0.73[/tex]

Step-by-step explanation:

It is given that:

[tex]sin(\theta -\dfrac{\pi}{2}) = 0.73[/tex]

Formula to be used:

[tex]1.\ sin(-x) = -sinx\\2.\ sin(\dfrac{\pi}{2}-x) = cosx\\3.\ cos(-x) = cosx[/tex]

Using Formula (1) written above:

[tex]\Rightarrow sin (\theta - \dfrac{\pi}{2})=sin(-(\dfrac{\pi}{2}-\theta ))\\\Rightarrow -sin(\dfrac{\pi}{2}-\theta)[/tex]

Now, using Formula (2) written above:

[tex]\Rightarrow -sin(\dfrac{\pi}{2}-\theta) = -cos \theta[/tex]

So, we can say that:

[tex]sin(\theta -\dfrac{\pi}{2}) = -cos\theta = 0.73 ...... (1)[/tex]

We have to find the value of [tex]cos(-\theta)[/tex].

Using Formula (3) written above:

[tex]cos(-\theta) = cos\theta[/tex]

So, ultimately we need to find the value of [tex]cos\theta[/tex]

Using equation (1):

[tex]-cos\theta = 0.73\\\Rightarrow cos\theta = -0.73[/tex]

So, the answer is [tex]cos(-\theta) = -0.73[/tex].

ACCESS MORE